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ABSTRACT Adaptation in quantitative traits often occurs through subtle shifts in allele frequencies at many loci—a process called
polygenic adaptation. While a number of methods have been developed to detect polygenic adaptation in human populations, we lack
clear strategies for doing so in many other systems. In particular, there is an opportunity to develop new methods that leverage
datasets with genomic data and common garden trait measurements to systematically detect the quantitative traits important for
adaptation. Here, we develop methods that do just this, using principal components of the relatedness matrix to detect excess
divergence consistent with polygenic adaptation, and using a conditional test to control for confounding effects due to population
structure. We apply these methods to inbred maize lines from the United States Department of Agriculture germplasm pool and maize
landraces from Europe. Ultimately, these methods can be applied to additional domesticated and wild species to give us a broader
picture of the specific traits that contribute to adaptation and the overall importance of polygenic adaptation in shaping quantitative
trait variation.
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DETERMINING the traits involved in adaptation is cru-
cial for understanding the maintenance of variation

(Mitchell-Olds et al. 2007), the potential for organisms to
adapt to climate change (Aitken et al. 2008; Bay et al.
2017), and the best strategies for breeding crops or livestock
(Howden et al. 2007; Takeda andMatsuoka 2008). There are
many examples of local adaptation from reciprocal transplant
experiments (Leimu and Fischer 2008; Hereford 2009) that
tell us about fitness in a specific environmental context,
but these experiments are less informative about how past
evolutionary forces have shaped present day variation
(Savolainen et al. 2013). Instead, quantifying the role of ad-
aptation in shaping current phenotypic variation will require
comparing observed variation with expectations based on
neutral models (Leinonen et al. 2008). With the growing
number of large genomic and phenotypic common garden

datasets, there is an opportunity to use these types of com-
parisons to systematically identify the traits that have di-
verged due to adaptation.

A common way of evaluating the role of spatially variable
selection in shaping genetic variation is to compare the pro-
portion of the total quantitative trait variation among pop-
ulations ðQSTÞ with that seen at neutral polymorphisms ðFSTÞ
(Prout and Barker 1993; Spitze 1993; Whitlock 2008).
QST 2 FST methods have been successful at identifying local
adaptation, but have a few key limitations that are especially
important for applications to large genomic and phenotypic
datasets (Whitlock 2008; Leinonen et al. 2013). First, stan-
dard QST 2 FST assumes a model in which all populations are
equally related [but see Whitlock and Gilbert (2012),
Ovaskainen et al. (2011), Karhunen et al. (2013) for methods
that incorporate more complicated models of population
structure]. Second, rigorously estimatingQST requires knowl-
edge of the additive genetic variance VA both within and be-
tween populations (Whitlock 2008). Many studies skirt this
demand by measuring the proportion of phenotypic variation
partitioned between populations (“PST”), either in natural
habitats or in common gardens. However, replacing QST with
PST can lead to problems due to both environmental differences
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among natural populations and nonadditive variation
in common gardens (Pujol et al. 2008; Whitlock 2008;
Brommer 2011). Third, QST 2 FST approaches are unable to
evaluate selection in individuals or populations that have
been genotyped but not phenotyped. It can be cheaper to
phenotype in a smaller panel and test for selection in a larger
genotyped panel. If individuals are heterozygous or outbred,
cannot be easily maintained in controlled conditions, or are
dead, they can be genotyped but not easily phenotyped. In
these cases, the population genetic signature of adaptation in
quantitative traits (“polygenic adaptation”) can be detected
by looking for coordinated shifts in the allele frequencies at
loci that affect the trait (Latta 1998; Le Corre and Kremer
2012; Kremer and Le Corre 2012).

Current approaches to detect polygenic adaptation in
genomic data take advantage of patterns of variation at
large numbers of loci identified in genome-wide association
studies (GWAS) (Turchin et al. 2012; Berg and Coop 2014;
Field et al. 2016). One approach, QX , developed by Berg
and Coop (2014), extends the intuition underlying classic
QST 2 FST approaches by generating population-level poly-
genic scores—trait predictions generated from GWAS results
and genomic data—and comparing these scores to a neutral
expectation. However, methods for detecting polygenic ad-
aptation using GWAS-identified loci are very sensitive to pop-
ulation structure in the GWAS panel (Berg and Coop 2014;
Robinson et al. 2015; Berg et al. 2018; Novembre and Barton
2018; Sohail et al. 2018). Because GWAS inmany systems are
conducted in structured, species-wide panels (Flint-Garcia
et al. 2005; Atwell et al. 2010; Wang et al. 2018), current
methods for detecting polygenic adaptation are difficult to
apply widely.

Here, we adapt methods for detecting polygenic adapta-
tion to be used in structured GWAS panels and related pop-
ulations. First, using a new strategy for estimating VA, we
develop an extension of QST 2 FST , which we call QPC, to test
for evidence of adaptation in a heterogeneous, range-wide
sample of individuals that have been genotyped and pheno-
typed in a common garden. We then develop an extension of
QX for use in structured GWAS populations where the panel
used to test for selection shares population structure with the
GWAS panel. We apply both of these methods to data from
domesticated maize (Zea mays ssp. mays). Overall, we show
that the method controls for false positive issues due to pop-
ulation structure and can detect selection on a number of
traits in domesticated maize.

Results

Extending QST 2 FST to deal with complicated patterns
of relatedness with QPC

Our approach to detecting local adaptation is meant to ame-
liorate two main aspects of QST 2 FST analysis that limit its
application to many datasets. First, many species-wide geno-
mic datasets are collected from individuals that do not group

naturally into populations, making it difficult to look for sig-
natures of divergence between populations. Second, calcu-
lating QST requires an estimate of VA, usually done by
phenotyping individuals from a crossing design.

We address these issues by using principal component
analysis (PCA) to separate the kinship matrix, K, into a set
of principal components (PCs) that are used to estimate VA,
and an orthogonal set of PCs used to test for selection. We
base our use of PCA on the animal model, which is often used
to partition phenotypic variance among close relatives within
populations into genetic and environmental components
(Henderson 1950, 1953; Thompson 2008). More generally,
the animal model is a statement about the distribution of an
additive phenotype if the loci contributing to the trait are
drifting neutrally (see Ovaskainen et al. 2011; Berg and Coop
2014; and Hadfield and Nakagawa 2010).

We first use the animal model to describe how traits are
expected to vary across individuals under drift alone. Let Z

!
be

a vector of measurements for a given trait across M individ-
uals, taken in a common garden with shared environment.
Assume for the moment that this trait is made up only of
additive genetic effects, that environmental variation does
not contribute to trait variation ðVP ¼ VAÞ, and that measure-
ments are without error (i.e., that Z

!
are breeding values).

The animal model then states that Z
!

has a multivariate nor-
mal distribution:

Z
! � MVNðm; 2VAKÞ; (1)

where m is the mean phenotype, VA is the additive genetic
variance, andK is a centered and standardizedM3M kinship
matrix, where diagonal entries represent the inbreeding co-
efficients of individuals and off-diagonal cells represent the
genotypic correlations between individuals (see Equation 16
inMaterials and Methods). The kinship matrix describes how
variation in a neutral additive genetic trait is structured
among individuals due to variation in relatedness, while VA

describes the scale of that variation.
Before discussing how we can use Equation 1 to develop a

test for adaptive divergence, we will show how this equation
relates to QST 2 FST . If the individuals in our sample are
grouped into a set of P distinct populations, the kinship
matrix can be used to generate an expectation of how trait
variation is structured among populations under neutrality.
The vector of population mean breeding values ð Z!popÞ can be
calculated from individual breeding values as Z

!
pop ¼ HT Z

!
,

where the pth column of the M3 P matrix H has entries of 1
np

for individuals sampled from population p, and 0 otherwise
(np is the number of individuals sampled from population p).
Because Z

!
is multivariate normal, it follows that Z

!
pop is as

well, with

Z
!

pop � MVN
�
mpop; 2VAKpop

�
; (2)

where Kpop ¼ HTKH and mpop is the mean trait value across
all populations.
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Based on Equation 2, we can calculate a simple summary
statistic describing the deviation of Z

!
pop from the neutral

expectation based on drift:

QX ¼
�
Z
!

pop2m
�TK21

pop
�
Z
!

pop2m
�

2VA
: (3)

Under neutrality, QX is expected to follow a x2 distribution
with P2 1 degrees of freedom (m is not known a priori and
must be estimated from the data, which expends a degree of
freedom) (Berg and Coop 2014). If all P populations are di-
verged equally from one another, with no additional struc-
ture or inbreeding within groups, then Kpop ¼ FSTI, where FST
is a measure of genetic differentiation between the popula-
tions and I is the identity matrix. Then, Equation 3 sim-
plifies to

QX ¼
ðP2 1ÞVar

�
Z
!�

2VAFST

               ¼ ðP2 1ÞQST

FST

(4)

showing that the QX statistic described in Equation 3 is the
natural generalization of QST 2 FST to arbitrary population
structure.

Here, we test for selection by looking for excess phenotypic
divergence along the major axes of relatedness described by
PCs instead of looking for excess divergence between popu-
lations. For an example of how PCs relate to within and
between population variation in a set of simulated popula-
tions, see Figure 1. In these simulated populations, PCs 1 and
2 distinguish between-population variation for three popula-
tions, while PC 3 separates out individuals within one pop-
ulation. While this is a simplified example compared to the
populations analyzed later in the paper, it shows the intuition
underlying our use of PCs to replace the within and between
population structure used by QST 2 FST.

QX can be linked to a PC-based approach by noting that,
for any arbitraryHmatrix (not just the type described above),
QX will follow a x2 distribution, and the degrees of freedom
of this distribution will be equal to the number of linearly
independent columns in H. We can generate a measure of
excess divergence along PCs by replacingHwith a matrix, U,
of eigenvalues of the kinship matrix K. U is calculated from
the eigendecomposition of K, such that K ¼ ULUT ; where
U ¼ ½U!1; U

!
2; U
!

3; . . . U
!

M � is the matrix of eigenvectors and L

is a diagonal matrix with the eigenvalues of K. Here, we
denote the mth eigenvector as U

!
m and the mth eigenvalue

as lm; and we call our measure of excess divergence along
PCs QPC.

We will now walk through calculating QPC. First we quan-
tify the amount of divergence that occurs along PCs by pro-
jecting the trait described by Z

!
onto the eigenvectors of K by

letting zm ¼ ð Z!2mÞ � Um
�!

. Intuitively, zm describes how
much the traits ( Z

!
) vary along the mth PC of the relatedness

matrix K. zm can also be thought of as the slope of the re-

lationship between Z
!

and the mth PC of K. Under a neutral
model of drift (from Equation 1) for each m:

zm � Nð0; 2VAlmÞ: (5)

To compare zm across different PCs, we can calculate a stan-
dardized projection ðcmÞ:

cm ¼ zmffiffiffiffiffiffi
lm

p ; cm � Nð0; 2VAÞ: (6)

Crucially, cm values represent deviations along linearly inde-
pendent axes of neutral variation (PCs) and are independent
from each other under neutrality; therefore, we can estimate
VA using the variance of any set of cm. To develop a test
analogous to QST 2 FST , we choose to declare projections
onto the top 1 : R of our eigenvectors ðC!1:RÞ that explain
broader patterns of relatedness to be “among population”
axes of variation, and projections onto the lower Rþ 1 : M
of our eigenvectors ðC!Rþ1:MÞ to be “within population” axes
of variation (we will discuss our choice of R later).

Under neutrality, we expect that VarðC!1:RÞ ¼ VarðC!Rþ1:MÞ.
Adaptive differentiation among populations will increase the
trait variance explained by the first PCs relative to the vari-
ance explained by later PCs and VarðC!1:RÞ.VarðC!Rþ1:MÞ.
Note that VarðC!Þ is the same as E½C!2� since the mean of C

!
is 0 based on Equation 6. We can test for differences between
the variance of projections onto early PCs and the variance of
projections later PCs using an F test:

Qamong:within ¼ E
�
C
!2

1:R
	

E
�
C
!2

Rþ1:M
	 � FðR;M2RÞ: (7)

We focus on the upper tail of the F distribution, as we are
interested in testing for evidence of selection contributing to
trait divergence. Rejection of the null indicates excess trait
variation in thefirstR PCs beyond an expectation based on the
later M2R PCs. All together, this test allows us to detect
adaptive trait divergence across a set of lines or individuals
without having to group these individuals into specific
populations.

We can also calculate variance along specific PCs and
comparedivergencealongspecificPCs to theadditivevariance
estimated using the lower R : M eigenvectors. Looking at
specific PCs will be useful for identifying the specific axes of
relatedness variation that drive adaptive divergence as well
as for visualizing results. For a given PC, S:

QPC ¼ E
�
C2
S
	

E
�
C
!2

Rþ1:M
	 � Fð1;M2RÞ: (8)

The rejection of the null corresponds to excess variance
along the sth PC beyond expectations based on variance along
lower PCs. Equation 7 and Equation 8 are valid for any values
of S, R, and M as long as R. S and M.R. However, picking
values of S, R, and M may not be trivial. We test for excess
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differentiation along the first set of PCs that cumulatively
explain 30% of the total variation in relatedness. However,
an alternative that we do not explore here would be selecting
the set of PCs to use with methods from Bryc et al. (2013) or
the Tracy-Widom distribution discussed in Patterson et al.
(2006).

Testing for selection with QPC in a maize mapping panel

We applied QPC to test for selection in a panel of 240 inbred
maize lines from the GWAS panel developed by Flint-Garcia
et al. (2005). The GWAS panel includes inbred lines meant to
represent the diversity of temperate and tropical lines used in
public maize breeding programs, and these lines were re-
cently sequenced as part of the maize HapMap 3 project
(Bukowski et al. 2017). In Figure 2A, we plot the relatedness
of all maize lines on the first two PCs. The first PC explains
2.04% of the variance and separates out the tropical from the
nontropical lines, while the second PC explains 1.90% of
the variance and differentiates the stiff-stalk samples from
the rest of the dataset [stiff-stalk maize is one of the major
heterotic groups used to make hybrids (Mikel and Dudley
2006)]. While previous studies have used relatedness to as-
sign lines to subpopulations, not all individuals can be easily
assigned to a subpopulation, and there is a fair amount of
variation in relatedness within subpopulations (Flint-Garcia
et al. 2005) (Figure 2A).

We first validated that QPC would work on this panel by
testing QPC on 200 traits that we simulated under a multivar-
iate normal model of drift based on the empirical kinship
matrix, assuming VA ¼ 1. As expected, from Equation 6, the

variance in the standardized projections onto PCs ðcmÞ of
these simulated traits centered on 1, and, across the 22 PCs
tested in 200 simulations, only 200 tests (4.5%) were signif-
icant at the P,0:05 level before correcting for multiple test-
ing. Adding simulated environmental variation ðVE ¼ VA=10Þ
and VE ¼ VA=2) to trait measurements increased the variance
of cm, with this excess variance falling disproportionately
along the later PCs (those that explain less variation in re-
latedness). These results suggest that unaccounted VE in-
creases estimated variance at later PCs, reducing power
to detect the selective signal of increased variance at earlier
PCs relative to later PCs. However, this reduction in power
can be minimized by controlling environmental noise—for
example by measuring line replicates in a common garden
or best unbiased linear predictions (BLUPs) from multiple
environments (See Appendix A for a more extensive treat-
ment of VE).

We tested for selection along 22 PCs for 22 traits that,
themselves, are estimates of the breeding value (BLUPs) of
these traits measured across multiple environments (Hung
et al. 2012). These 22 traits include a number of traits
thought to be important for adaptation to domestication
and/or temperate environments in maize, such as flowering
time (Swarts et al. 2017), upper leaf angle (Duvick 2005),
and plant height (Duvick 2005; Peiffer et al. 2014). After
controlling for multiple testing using a false discovery rate
(FDR) of 0.05, we found evidence of adaptive divergence for
three traits: days to silk, days to anthesis, and node number
below ear (Figure 3A). These results are generally robust to
the choice of PCs used for the denominator of Equation 8

Figure 1 Relating PCs to within- and between-
population variation. A conceptual figure based on
three populations simulated following the dendro-
gram on the left of plot A. Each population has
70 individuals in it with some within-population var-
iation in relatedness (data not shown.). (A–C) The
relationship between PCs 1, 2, and 3 and a neutrally
evolving trait.
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used to estimate VA (Supplemental Material, Figure S3). We
plot the relationship between PC1 and two example traits to
illustrate the data underlying these signals of selection. In
Figure 3B, we show a relationship between PC1 and Kernel
Number that is consistent with neutral processes, and, in
Figure 3C, we show a relationship between PC 1 and days
to silk that is stronger than would be expected due to neutral
processes and is instead consistent with diversifying selec-
tion. We detected evidence of diversifying selection on vari-
ous traits along PC1, PC2, and PC10. While PC 1 and PC2
differentiate between known maize subpopulations (Figure
2A), PC 10 separates out individuals within the tropical sub-
population, so our results are consistent with adaptive diver-
gence contributing to trait variation within the tropical
subpopulation (Figure S2).

Detecting selection in unphenotyped individuals using
polygenic scores

Extending the method described above to detect selection in
individuals or lines that have been genotyped but not pheno-
typed will allow the study of polygenic adaptation when
phenotyping is expensive or impossible. Here, we outline
methods for detecting selection in individuals that have been
genotyped but not phenotyped (we refer to these individuals
as the “genotyping panel”). We build on methods developed
in Berg and Coop (2014) and Berg et al. (2017) and extend
them to test for adaptive divergence along specific PCs and in
the presence of population structure shared between the
GWAS panel and the genotyping panel. The main difference
between this test and QPC as described previously is that we
now test for selection on polygenic scores, not on measured
phenotypes. Specifically, if we have a set of n independent,
trait-associated loci found in a GWAS, we can write the poly-
genic score for individual or line i as:

Xi ¼
Xn
j¼1

2bipij; (9)

where bj is the additive effect of having an alternate allele of
the jth locus, and pij is the alternate allele’s frequency within
the ith individual or line (i.e., half the number of allele copies
in a diploid individual).

However, when there is shared population structure be-
tween the GWAS panel and the genotyping panel, there are
two concerns about testing for selection on polygenic scores
made for the genotyping panel:

1. If we have already found a signal of selection on our phe-
notypes of interest in the GWAS panel, then a significant
test could simply reflect this same signal and not indepen-
dent adaptation in the genotyping panel.

2. Controls for population structure in the GWAS could bias
the loci identified and the effect sizes estimated for these
loci, leading to false positive signals of selection in the
genotyping panel.

Modern GWAS control for false-positive associations due to
population structure by incorporating a random effect based
on the kinship matrix into the GWAS model (Yu et al. 2006).
However, this approach will bias GWAS toward finding asso-
ciations at alleles whose distributions do not follow neutral
population structure, and toward missing true associations
with loci whose distributions do follow population structure
(Atwell et al. 2010). Because of this bias, the loci detected
may not appear to have neutral distributions in the GWAS
panel, or, crucially, in any additional set of populations that
share structure with the GWAS panel.

We illustrate the problem by looking at the relationship
between PC 1 and polygenic scores for a trait that has been

Figure 2 Structure in the maize populations. These plots show the first two PCs of population structure (the eigenvectors of the kinship matrix) for
various maize panels included in this paper. (A) 240 maize lines from the “GWAS panel” that were used in the trait QPC analysis. Each point represents
an inbred line and points are colored by their assignment to subpopulations from Flint-Garcia et al. (2005). (B) The GWAS panel from (A) along with the
2704 inbred maize lines of the Ames diversity panel (Romay et al. 2013). (C) The GWAS panel from (A) along with 906 European maize landraces from
Unterseer et al. (2016).
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simulated tobeevolvingneutrally in theGWASpanel anda set
of related maize lines (Figure 4A). While there is no strong
relationship between the simulated trait and PC 1 (Figure
4A), the polygenic scores calculated from GWAS results do
show a strong correlation with PC 1 (Figure 4B). Note that
the simulated trait values and polygenic scores have been
standardized by dividing by the square root of their respec-
tive VAs estimated from the lower PCs, so this erroneous cor-
relation not simply a result of the inflation of effect sizes in
the GWAS due to false positives and the winner’s curse, but
represents an issue caused by shared population structure
between the GWAS panel and the genotyping panel. The
magnitude of the slope of the relationship between standard-
ized polygenic score and PC 1 was greater than the magni-
tude of the slope of the relationship between standardized
simulated trait and PC 1 for 162 out of 200 simulations.

Here, we control for shared structure between the GWAS
and genotyping panels by conditioning on the estimated
polygenic scores in the GWAS panel (X

!
2) when assessing

patterns of selection on the polygenic scores of a genotyping
panel ðX!1Þ. Specifically, following the multivariate normality
assumption (Equation 1), we model the combined vector of
polygenic scores in both panels as:


X
!

1

X
!

2

�
� MVN




m
m

�
;VA



K11 K12
KT
12 K22

��
: (10)

where m is the mean of the combined vector ðX1;X2Þ, K11 and
K22 are the kinship matrices of the genotyping and GWAS
panels, and K12 is the set of relatedness coefficients between
lines in the genotyping panel (rows) and GWAS panel (col-
umns). Note that the combination of the four kinship matri-
ces in the variance term of Equation 10 is equivalent to the

kinship matrix of all individuals in the genotyping and GWAS
panels. We discuss the mean centering of these matrices in
Appendix C.

The conditional multivariate null model for polygenic
scores in thegenotypingpanel conditional on theGWASpanel
is then

X
!

1

���X!2 � MVN
�
m!9; 2VaK9

�
; (11)

where m!9 is a vector of conditional means with an entry for
each sample in the genotyping panel,

m9
�! ¼ mþ K12K21

22 ðX
!

2 2mÞ (12)

and K9 is the relatedness matrix for the genotyping panel
conditional on the matrix of the GWAS panel,

K9 ¼ K11 2K12K21
22 K

T
12: (13)

Following Equation 6 and Equation 8, we can test for excess
variation along the PCs of K9, using the difference between
polygenic scores X

!
1 and the conditional means m!9 as the

phenotype. Specifically, if U
!

m
9 and lm9 are the mth eigenvector

and eigenvalue of K9, then

Cm9 ¼ X
!

2 m!9
� �

U
!

m9ffiffiffiffiffiffi
lm

p
9

;Cm9 � Nð0; 2VAÞ (14)

and

QPC ¼ E½Cm92�
E½C!R:M92 �

� Fð1;M2RÞ (15)

Figure 3 Detecting adaptation within the GWAS panel with QPC . (A) A heatmap showing results from QPC on the first 22 PCs (x-axis) for 22 traits
(y-axis). Squares are colored by their P value. If the FDR (“q value”) corresponding to that P value is ,0:05 there is a white dot in the square. (B) Total
kernel number per cob plotted against the first PC of relatedness (PC 1). Each point represents a line in the GWAS panel, colored by its membership in a
subpopulation (same colors as Figure 2A). The solid line shows the linear regression of the trait on PC 1 and the dashed lines show the 95% confidence
interval of linear regressions expected under neutrality. Note that the linear regression is not the same as the F test done in QPC , and that we plot these
lines for visualization purposes only. (C) Similar to (B), but showing days to silk on the Y axis. The regression line for days to silk against PC 1 (solid line)
falls outside the expectation based on neutrality (dotted line), consistent with selection increasing trait divergence across PC 1.
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where R.m and M.R. We will refer to the conditional
version of the test as “conditional QPC”.

It is worth taking some time to discuss how the conditional
test controls for the two issuesdue to sharedstructure. First, by
incorporating the polygenic scores of individuals in theGWAS
panel into the null distribution of conditionalQPC, we are able
to test directly for adaptive divergence that occurred in the
genotyping panel. Berg et al. (2017) also use the conditional
test in this manner. Second, the conditional test forces the
polygenic scores of individuals in the genotyping panel into
the same multivariate normal distribution as the polygenic
scores of individuals in the GWAS panel. The polygenic scores
of GWAS individuals will include the ascertainment biases
expected due to controls for structure in the GWAS, so ascer-

tainment bias will be incorporated into the null distribution
of polygenic scores expected under drift. Now, we will detect
selection only if trait divergence exceeds neutral expectations
based on this combined multivariate normal distribution.

Applying QPC to polygenic scores in North American
inbred maize lines and European landraces

First, we conducted a set of neutral simulations to assess the
ability of the conditional QPC test to control for false positives
due to shared structure. We applied both the conditional and
original (“nonconditional”) QPC test to detect selection on
polygenic scores constructed from simulated neutral loci in
two panels of maize genotypes that have not been extensively
phenotyped: a set of 2815 inbred lines from the United States

Figure 4 Simulations of QPC on polygenic scores. (A) The relationship between a neutrally simulated trait and PC 1 in the European landraces. Each
point represents one individual and the trait value has been divided by

ffiffiffiffiffiffi
VA

p
so that it can be compared to traits with different values of VA. (B) The

relationship between polygenic scores calculated for the same trait as in (A), based on a GWAS in the GWAS panel. This relationship between polygenic
scores and PC is what is used in the nonconditional QPC test. As in (A), each point represents one maize individual and trait has been standardized byffiffiffiffiffiffi
VA

p
. (C) The proportion of 200 neutral simulations that were significant at the P,0:05 level for the nonconditional QPC test and the conditional QPC

test. A horizontal line is plotted at 0.05, to show the proportion of significant tests expected under the null hypothesis. (D) The same information, this
time for the European landraces.
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Department of Agriculture (USDA) that we refer to as “the
Ames panel” (Romay et al. 2013), and a set of 906 individuals
from 38 European landraces (Unterseer et al. 2016). We
chose these two panels to evaluate the potential of condi-
tional QPC to control for shared population structure when
the problem is severe, as in the Ames panel (Figure 2B), and
moderate, as in the European landraces (Figure 2C). In ad-
dition, we expect that the evolution of many quantitative
traits has been important for European landraces as they
adapted to new European environments in the last �500
years (Tenaillon and Charcosset 2011; Unterseer et al. 2016).

False positive signatures of selection were common when
using the original, nonconditional QPC to test for selection on
polygenic scores based on loci simulated under neutral
processes (Figure 4, C and D and Figure S4) even though
the GWAS used to identify the loci used to make polygenic
scores both had low power to detect associations and had
high false positive rates. (Figure S5). The increase in false
positive signals of selection due to shared structure persisted
to much later PCs in the Ames panel than in the European
landraces, likely because the extent of shared structure is
more pervasive for the Ames panel. However, the conditional
QPC test appeared to control for false positives in both the
Ames panel and the European landraces (Figure 4, A and B).

We then conducted GWAS on 22 traits in the GWAS panel,
using a P value cutoff of 0.005. This cutoff is less stringent
then the cutoffs standardly used in maize GWAS (Romay
et al. 2013; Peiffer et al. 2014), but allowed us to detect a
large number of loci that we could use to construct polygenic
scores. After thinning the loci for linkage disequilibrium (LD),
we found associations for all traits with an average of 350 as-
sociated SNPs per trait (range 254–493).We used these SNPs
to construct polygenic scores for lines in the Ames panel and
individuals in the European landraces following Equation 9.

When we applied the original (nonconditional) test from
Equation 8 to polygenic scores for 22 traits in the Ames panel
on 182 PCs (4004 tests total), we detected widespread poly-
genic adaptation (Figure S6A and Figure S7A). In contrast,
conditional QPC on the same set of traits and PCs found no
signatures of polygenic adaptation in the Ames panel that
survived control for multiple testing (Figure S6B and Figure
S7B). The lack of results in the conditional test is unsurpris-
ing because the GWAS panel’s population structure almost
completely overlaps the Ames panel (Figure 2B), so once
variation in the GWAS panel is accounted for in the condi-
tional test, there is likely little differentiation in polygenic
scores left to test for selection. We report these results to
highlight the caution that researchers should use when ap-
plying methods for detecting polygenic adaptation to geno-
typing panels that share population structure with GWAS
panels.

In the European landraces, we conducted QPC on 22 traits
across 17 PCs (374 tests total), and, while we detected selec-
tion on a number of traits, as with the Ames panel, none of
these signals were robust to controlling for multiple testing
using a FDR approach (Figure S7D). However, we report the

results that were significant at an uncorrected level in Figure
5A to demonstrate how these types of selective signals could
be visualized with these approaches. In Figure 5B, we show
the relationship between conditional PC1 (U

!
m
9) and the dif-

ference between polygenic score for the number of brace
roots and a conditional expectation (X

!
2 u!9), which was

our strongest signal of selection in the panel.
We conducted power simulations by shifting allele fre-

quencies of GWAS-identified loci along a latitudinal selective
gradient in the European landraces (see Materials and Meth-
ods section for details). When selection was strong (selection
gradient a = 0.05), we detected signals of selection in all
200 simulations along the first conditional PC, which had
the strongest association with latitude. When selection was
moderate (a= 0.01) we detected selection in 57 of 200 sim-
ulations (Figure 5, C and D). These results suggest that there
is power to detect selection on polygenic scores with QPC in
the European landraces if selection actually occurs on the loci
used to make these polygenic scores.

Discussion

In this paper, we have laid out a set of approaches that can be
used to study adaptation and divergent selection using geno-
mic andphenotypic data fromstructuredpopulations.Wefirst
described a method, QPC, that can be used to detect adaptive
trait divergence in a species-wide sample of individuals or
lines that have been phenotyped in common garden and
genotyped. We demonstrated this method using a panel of
phenotyped domesticated maize lines, showing evidence of
selection on flowering time and node number below ear. Sec-
ond, we present an extension of QPC that can be applied to
individuals related to the GWAS panel that have not them-
selves been phenotyped using a conditional test to avoid con-
founding due to shared population structure. We showed
that this test is robust to false positives due to population
structure shared between the GWAS panel and the genotyp-
ing panel, and that it has power to detect selection. We ap-
plied this method to two panels of maize lines and showed
marginal evidence of selection on a number of traits, but
these signals were not robust to multiple testing corrections.
Overall, the methods described and demonstrated here will
be useful to a wide range of study systems.

While we were able to use QPC to detect diversifying se-
lection on phenotypes in the GWAS panel of 240 inbred lines,
we were unable to detect similar patterns using polygenic
scores for the Ames panel and European landraces (after
controlling for multiple testing). This lack of selective signal
was expected in Ames because the high overlap in related-
ness between the Ames panel and the GWAS panel reduces
power to detect selection in the Ames panel alone. However,
our simulations showed that we did have power to detect
moderate to strong selection acting on GWAS-associated loci
in European landraces, and we expect that adaptation to
European environments has contributed to trait diversifica-
tion (Unterseer et al. 2016). There are a few factors that
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could explain our inability to detect selection on polygenic
scores for European landraces. First, the polygenic scores
we constructed used GWAS results from traits measured in
North American environments. If there is G3 E for these
traits, we may not be measuring traits that are actually under
selection in Europe. Second, it is likely that in our small
GWAS panel (n = 263 or 281) we are underpowered to
detect most causal loci and so our predictions are too inaccu-
rate to pull out a signal of selection. All together, our results
suggest that while GWAS are undoubtedly useful to identify
loci underlying traits, an analysis of phenotypes expressed in
a common environment will often be the most powerful ap-
proach for detecting adaptation, especially in systems with
underpowered GWAS.

Our proposed methods use PCA to separate out inde-
pendent axes of population structure. There is a clear con-
nection between PCA and average pairwise coalescent times
(McVean 2009), and, because of this connection, PCA has
been useful in a range of population genetic applications,
including the detection and visualization of population
structure (Patterson et al. 2006; Novembre et al. 2008), un-
derstanding the roles of population history and geography
(Menozzi et al. 1978; Novembre and Stephens 2008), con-
trolling for population structure in GWAS (Price et al.
2006). Here we use PCs to define broad axes of variation
analogous to the between-population variation described in
standard QST 2 FST tests while using later PCs to describe
variation within populations. In our application to maize
data, we use arbitrary cutoffs to define which PCs represent

between- and within-population variation. In the future,
developing a rigorous method for choosing appropriate
PCs will be useful, but, for now, we suggest that researchers
use their own knowledge of their study system and datasets
to choose these PCs. We also caution that the presence of
many close relatives in the sample could affect PCA, such
that early PCs could end up representing variation within a
large family, and we suggest that researchers remove close
relatives when using these methods. In addition, while PCs
provide a useful way of separating signals, in some cases the
constraints of PCA make the PCs unintuitive in terms of
geography and environmental variables (Novembre and
Stephens 2008). Therefore, it will also be useful to explore
approaches like that outlined in Equation 9 of Berg et al.
(2018) that project trait values or polygenic scores onto
environmental variables to test if the relationship between
trait and environment is larger than would be expected due
to drift.

There are a number of connections between the methods
presented here and previous approaches. Ovaskainen et al.
(2011), Karhunen et al. (2013) calculated a QST 2 FST -like
measure of diversifying selection using the kinship matrix to
model variation in relatedness among subpopulations. Their
approach, however, is still reliant on identifying subpopula-
tions and on using trait measurements in families or crosses
to obtain estimates of VA. For single loci, a number of FST-like
approaches have been developed that use PCs to replace
subpopulation structure to detecting individual outlier loci
that deviate from a neutral model of population structure

Figure 5 Detecting adaptation within the European landraces with QPC on polygenic scores. (A) A heatmap showing results from the conditional QPC

on the first 17 PCs (x-axis) for 22 traits (y-axis). Squares are colored by uncorrected P value if P , 0.1. (B) Marginal evidence of selection on brace root
number. The difference between polygenic score for brace root and the conditional mean ðX!2 m!9Þ is plotted against the conditional PC 1 for each line.
The solid line shows the observed linear relationship between conditional PC 1 and X

!
2 m!9 and the dotted lines show the 95% confidence interval for

this slope based on neutral expectations uncorrected for multiple testing and the 99.99% confidence interval corresponding to a Bonferonni correction
for multiple testing. (C) The absolute value of the correlation coefficient (R) between PCs and latitude. (D) The proportion of significant tests for traits
simulated to be under selection along latitude for three different selection strengths.
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(Duforet-Frebourg et al. 2015; Chen et al. 2016; Galinsky
et al. 2016; Luu et al. 2017). Our methods can be viewed as
a a phenotypic equivalent to these locus-level approaches. In
addition, Liu et al. (2018) have recently explored a related
approach using projections of polygenic scores along PCs.
Finally it may be useful to recast our method in terms of
the animal model by splitting the kinship matrix into a “be-
tween population” matrix described by early PCs and a
“within population” matrix described by later PCs. We could
then detect selection by comparing estimates of VA for these
two matrices. Such an animal-model approach may also offer
a way to incorporate environmental variance in systems
where replicates of the same genotype are not possible.

There are a number of caveats for applyingQPC to traits on
additional systems and datasets that stem from issues in ac-
curately estimating VA; and it is important to carefully con-
sider the assumption underlying QPC that all traits are made
up of additive combinations of allelic effects. If environmen-
tal variation contributes to trait variation, it will reduce the
power of QPC to detect diversifying selection because envi-
ronmental variation will contribute most to variation at later
PCs (Appendix A). Additionally, additive-by-additive epista-
sis has the potential to contribute to false-positive signals of
adaptation because additive-by-additive epistatic variation
will contribute most to phenotypic variance along earlier
PCs (Appendix B). In general, nonadditive interactions be-
tween alleles may cause difficulty for QPC in systems, like
maize, where traits are measured on inbred lines but selec-
tion occurs on outbred individuals. However, there is evi-
dence that additive-by-additive variance will often be small
compared to VA within populations (Hill et al. 2008); for
example, the genetic basis of flowering time variation in
maize is largely additive (Buckler et al. 2009), suggesting
that our conclusions about adaptive divergence in flowering
time are likely robust to concerns about epistasis.

Our results highlight a number of issues with polygenic
adaptation tests thatdependonpolygenic scoresusingGWAS-
associated loci. As has been recently highlighted by Berg et al.
(2018) and Sohail et al. (2018), structure in a GWAS panel
can contribute to false signals of polygenic adaptation in
polygenic scores constructed from the results of that panel.
We observed that this problem is especially strong when
there is shared population structure between the GWAS
panel and the genotyping panel used to construct polygenic
scores but that the use of a conditional test that accounts for
shared structure between the two datasets can control for
these false positives. There is potential for these methods to
be used to address problems due to structure in GWAS panels
in both nonhuman and human systems, although the condi-
tional test approach would need to be adapted to the very
large sample sizes used in human GWAS.

All together, the methods presented here provide an ap-
proach todetecting the roleofdiversifying selection in shaping
patternsof trait variationacross anumberof species and traits.
A number of further avenues exist for extending these meth-
ods. First, we applied this test to traits independently, but

extending QPC to incorporate multiple correlated traits will
likely improve power to detect selection by reducing the num-
ber of tests done. In addition, this extension could allow the
detection of adaptive changes in trait correlations. Second,
these methods could be extended to take advantage of more
sophisticatedmethods of genomic prediction than the additive
model presented here (as in Beissinger et al. 2018; Liu et al.
2018). Pursuing this goal will require carefully addressing
issues related to LD between marker loci. Overall, developing
and applying methods for detecting polygenic adaptation in a
wide range of species will be crucial for understanding the
broad contribution of adaptation to phenotypic divergence.

Materials and Methods

Analyses were done in R and we used the dplyr package
(Wickham et al. 2017; R Core Team 2018). All code is avail-
able at https://github.com/emjosephs/qpc-maize.

The germplasm used in this study

We analyzed three different maize diversity panels.

The GWAS panel: The Major Goodman GWAS panel, also
sometimes referred to as “the 282” or “the Flint Garcia
GWAS Panel,” contains 302 inbred lines meant to repre-
sent the genetic diversity of public maize-breeding pro-
grams (Flint-Garcia et al. 2005). Genotype-by-sequencing
(GBS) data are available for 281 of these lines from
Romay et al. (2013) and 7X genomic sequence from
271 of these lines is available from Bukowski et al.
(2017). In addition, these lines have been phenotyped
for 22 traits in multiple common garden experiments
(Hung et al. 2012).

The Ames panel: A panel of 2815 inbred lines from the
USDA that have been genotyped with GBS (Romay
et al. 2013) at 717,588 SNPs.

The European landraces: A panel of 906 individuals from
38 European landraces (31 Flint-type and 7 Dent-type)
that were genotyped at 547,412 SNPs using an array
(Unterseer et al. 2016).

QPC in the GWAS panel

We tested for selection on 22 traits phenotyped in the GWAS
panel. BLUPs for these traits were sourced from Hung et al.
(2012) and genomic sequence data from Bukowski et al.
(2017). Out of the 302 individuals in the GWAS panel, we
retained 240 individuals that had data for all 22 traits of
interest and had genotype calls for . 70% of the SNPs in
the genomic dataset.

To construct a kinship matrix for the GWAS panel, we
randomly sampled 50,000 SNPs from across the genome after
removing sites that were missing any data or had unrealistic
levels of heterozygosity (the proportion of heterozygous in-
dividuals exceeded 0.5). The allele frequencies (0, 0.5, or 1)
for individuals at these 50,000SNPswere arranged in anMxN
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matrix (referred to here as G), where M is the number of
individuals (240) and N is the number of loci (50,000) such
that gin is the entry on the ith row and nth column of G, and it
represents the genotype of the ith individual at the nth locus.

Then we centered the matrix using a centering matrix, T,
which is anM2 1 byMmatrix with M2 1

M on the diagonal and
21
M at all other cells. The matrix TG will be the matrix G that
has been mean centered, such that if ðtgÞin is the entry for the
ith individual and nth locus and gn is themean allele frequency
of the nth locus, ðtgÞin ¼ gin 2 gn. Note that multiplying G by T
also drops one individual from the kinship matrix to reflect
the fact that by mean centering, we have lost one degree of
freedom. We also standardized G by dividing by the square
root of the expected heterozygosity of all loci, calculated by
taking the mean of eð12 eÞ across all loci, where e is the
mean allele frequency of a locus. All together, we calculated
K as the covariance of the centered and standardized matrix:

K ¼ cov

 
TGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½eð12 eÞ�p
!

(16)

Each cell of K contains the covariance of genotypes between
individuals, such that if Kij is the value of the ith row, and jth

column of K it represents the covariance between the ith and
jth individuals, such that,

Kij ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½eð12 eÞ�p XN

n¼1

ðtgÞinðtgÞjn

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½eð12 eÞ�p XN

n¼1

ðgin 2 gnÞðgjn 2 gnÞ (17)

The principal components of the genotype matrix G were
calculated from the eigenvectors of K. However, an equiva-
lent way to estimate the PCs would be to conduct a singular
value decomposition on a mean centered G (McVean 2009).
We used the kinship matrix K to test for selection on traits
using Equation 8 on the first 22 PCs that, cumulatively, ex-
plain 30% of the variation in K.

For the denominator of Equation 8 we used the last half
of the PCs (119–238). We plotted 95% confidence inter-
vals for the mth PC for display purposes as lines with
the same mean as the observed data and a slope of

61:96  * 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmE½C2

119:238�
q

. We conducted 200 simulations by

simulating traits that evolve neutrally along the kinship ma-
trix using the mvrnorm R function in the MASS package
(Venables and Ripley 2002) and testing for selection using
Equation 8.

GWAS in maize inbreds

We used GEMMA (Zhou and Stephens 2012) to conduct
GWAS for trait BLUPs in the GWAS panel, controlling for
population structure with a standardized kinship matrix gen-
erated by GEMMA (note that this matrix is different from the
one used in tests of selection with QPC). We conducted two
separate GWAS for use in testing for selection in the Ames

panel and in the European panel separately. First, for finding
SNP associations that we could use to construct breeding
values in the Ames panel, we used GBS data for 281 lines
from the GWAS panel that had been genotyped by Romay
et al. (2013). Next, for finding SNP associations for construct-
ing breeding values in the European landraces, we took
whole genome data from Bukowski et al. (2017) for 263 in-
dividuals that had genotype calls for . 70% of polymorphic
sites and extracted genotypes for sites that overlapped with
those present in the European landrace dataset from
Unterseer et al. (2016). All genotypic data were aligned to
v3 of the maize reference genome, except the genotypes of
the European landraces, which we lifted over from v2 to v3
using CrossMap (Zhao et al. 2013). For both sets of GWAS
analyses, we tested all SNPs with a minor allele frequency
above 0.01,,0.05 missing data, and we picked all hits with a
likelihood-ratio test P value below 0.005. We pruned both
sets of SNPs by using a linkage map from Ogut et al.
(2015) to construct one cM windows with GenomicRanges
in R (Lawrence et al. 2013). We picked the SNP with the
lowest P value per window and, when multiple SNPs had
the same P value, we sampled one SNP randomly.

Simulated populations and traits

We generated data for Figure 1 using ms to do coalescent
simulations (Hudson 2002) for three large populations of
60 individuals, eachwith two smaller subpopulations of 30 in-
dividuals. Simulations were conducted with the following
command: ms 180 1 -t 500 -r 500 10000 -I 6 30 30 30
30 30 30 -ej 0.06 1 2 -ej 0.06 3 4 -ej 0.06 5 6 -ej 0.1 4 6 -ej
0.15 2 6. This command yielded 6689 loci polymorphic loci
for 180 individuals. Neutrally evolving trait values were de-
termined by summing up the number of nonreference allele
copies each individual has, multiplied by these effect sizes for
50 randomly chosen causal loci (as in Equation 9). The other
6639 loci were used to generate a kinship matrix following
Equation 16 and the eigendecomposition of this matrix pro-
vided principal components.

Applying QPC to polygenic scores from the Ames panel
and European landraces

Wegenerated combined geneticmatrices for each genotyping
panel (eitherAmesorEuropean) and theGWASpanel. Inboth
datasets, we removed sites with a minor allele frequency
below 0.01 and a proportion of missing data . 0.05 across
the combined dataset, leaving 108,110 SNPs in the Ames-
GWAS dataset and 441,986 SNPs in the European-GWAS
dataset. Missing data points were imputed by replacing each
missing genotype from a random sample of the pool of geno-
types present in the individuals without missing data. The
random imputation step was done once for each missing data
point and the same randomly imputed dataset was used for
all subsequent analyses.

We constructed kinship matrices for the Ames panel com-
binedwith theGWASpanel and theEuropeanpanel combined
with the GWAS panel following the procedure described in

Detecting Adaptive Differentiation 999



Equation 16, using 50,000 randomly sampled SNPs with
a minor allele frequency . 0.01 and a proportion of missing
data , 0.05. The genotype information from the combined
datasets was used to construct polygenic scores following
Equation 9.

We used these polygenic scores to test for diversifying
selection on 22 traits (described above) for the PCs that
cumulatively explained the first 30% of variation in the
conditional kinship matrix (182 for the Ames panel and
17 for European maize). As in the QPC test, we chose the later
50% of PCs for the denominator. We used Qvalue (Storey
et al. 2015) to generate FDR estimates (“q values”).

Simulations of QPC on polygenic scores

We conducted neutral simulations to detect the rate of false-
positive inferencesof selectiononneutrallyevolving traits.We
conducted 800 total: 400 with the Ames panel and 400 with
the European landrace panel, andwithin eachpanel, 200with
500 causal loci and 200 with 50 causal loci. For each simu-
lation, we simulated a phenotype by randomly picking 500 or
50 sites in the combined genotypedatasets andassigning each
alternate allele aneffect sizedrawn fromanormaldistribution
with mean 0 and variance 1. For each individual in the GWAS
panel, we then calculated a simulated breeding value follow-
ing Equation 9. These simulated traits were mapped using a
GWAS with the same procedure described above. These sim-
ulations showed the GWAS in our sample had relatively low
power to detect causal alleles, especially ones of small effect,
and also identified a large number of false-positives, as could
be expected for a GWAS of this size (Figure S5).

The loci identified in theseGWAS(P,0.005)were pruned
for LD and then used for analysis. We tested for evidence of
diversifying selection on polygenic scores in two ways for
each set of simulations. First, we used QPC with the standard
kinship matrix generated using lines in the genotyping set
(either Ames or European landraces). Second, we used the
conditional QPC test described in Equation 11.

We also conducted power simulations using the European
landraces. We first simulated traits evolving under diversify-
ing selection by taking trait-associated loci from the neutral
simulations and shifting the allele frequencies at these loci in
the European landraces based on their latitude of origin. Let p
be the initial allele frequency in the jth landrace population, L
the latitude of the jth landrace population, b the effect size of
a alternate allele at the ith locus, e the mean allele frequency
of the ith allele, a the selection gradient, and p9 the allele
frequency after selection. Then

p9 ¼ pþ beð12 eÞaL (18)

We conducted simulations for three values of a: 0.05, 0.01,
and 0.005 and tested for selection with conditional QPC.

Data availability

All codeanddataareavailableathttps://github.com/emjosephs/
qpc-maize. Supplementalmaterial available at Figshare: https://
doi.org/10.25386/genetics.7607471.
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Appendix

Appendix A—Environmental Variation and Inferences of Selection from QPC

Equation 1 assumes that there is no environmental variation contributing to fitness. It can be rewritten to include the effects of
environmental variation as follows:

Z
! � MVNðm; 2VAK þ VEIÞ; (19)

where Z
!

is a vector of traits with mean m, I is the identity matrix, K is a kinship matrix, and VE is a constant that measures
environmental variation (Falconer and Mackay 1996; Hill 2010). Increases in VE will thus increase the diagonal entries of the
variance-covariance matrix for the multivariate normal distribution of Z

!
. The intuition behind the effect of VE on the var( Z

!
) is

that, in a properly designed common garden experiment, VE will increase individual deviations from the expected trait value by
increasing the diagonals of the variance-covariance matrix, but will not affect covariance between individuals.
Now, when we mean center Z

!
and project it onto a matrix of the eigenvectors of the kinship matrix (U), we can get an

expression for the set of projections ð zm�!Þ across all eigenvectors:

zm
�! ¼ � Z!2m

�
U ¼ UT� Z!2m

�
: (20)

We can express the variance and distribution of X as

Var
�
zm
�!� ¼ UTð2VAK þ VEIÞU; (21)

zm
�! � MVNð0; 2VALþ VEÞ: (22)

We can standardize zm by the variance explained by each PC (the eigenvalues of K):

C
!¼ zm

�!ffiffiffiffi
L

p (23)

Var
�
C
!� ¼ L21=2ð2VALþ VEÞ

�
L21=2�T (24)

C
! � MVN



0; 1þ VE

2VA
L21

�
(25)

This result suggests that the contribution of VE will be strongest along PCs with smaller eigenvalues (“later PCs”), so QPC is
conservative in the face of VE since it looks for an excess of differentiation along early PCs with larger eigenvalues compared to
PCs with smaller eigenvalues.
We tested the intuition described above with simulations of traits that evolve neutrally for with VA ¼ 1 and VE ¼ 0; 0:1; and
0.5. We found that increasing VE increased the variance of CM at later PCs more than at early PCs (Figure S1A), and that this
meant that fewer simulations showed significant signals of selection than would be expected under neutrality (Figure S1B)

Appendix B—Additive-by-Additive Epistasis and QPC

We denote the variance contributed by additive-by-additive epistasis as VAA. Assuming no LD, we can rewrite Equation 1 as
follows:

Z
! � MVN

�
m; 2VAK þ 2VAAK2�; (26)

following e.g. Equation 9.13 in Falconer andMackay (1996) and Hill (2010). Using the eigendecomposition of K, K ¼ ULU21,
where U is a matrix whose columns are the eigenvectors of K andL is a diagonal matrix with the eigenvalues of K, we find that
K2 ¼ UL2U21. As in Appendix A, we can calculate the VarðC!Þwhere C

!
is a vector of the projections of Z

!
ontoU, standardized

by dividing by L21=2.

C
! � MVN



0; 1þ VAA

VA
L

�
(27)
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Intuitively, we can see that, whenVAA ismuch larger thanVA, additive-by-additive epistasis will contribute disproportionately to
variation along PCs that correspond to higher eigenvalues. Therefore, additive-by-additive epistasis that exceeds VA can
contribute to false positive signals of diversifying selection by increasing trait divergence along earlier PCs. However, in most
situations, VAA is unlikely to be large enough to significantly impact trait variance (Falconer and Mackay 1996; Hill 2010)

Appendix C—Mean Centering

Properly mean-centering conditional expectations for polygenic scores and the kinship matrix used to calculate QPC on these
scores is crucial. However, the choice of how to properly mean-center these two parameters is not entirely straightforward
when working with conditional distributions (as in Equation 10).
To illustrate the problem, imagine that we mean center the conditional expectations for polygenic scores in the genotyping
panel (m!9) around themean of the GWAS panel, such that m!9 ¼ m2 þ K12K21

22 ðX
!

2 2m2Þ, wherem2 is the mean polygenic score
of individuals in the GWAS panel, X

!
2 is the vector of polygenic scores in the GWAS panel, and K12 and K22 are subsets of the

relatedness matrix between individuals in the genotyping panel and GWAS panel as defined for Equation 10. At the same time,
we generate K11, K22, and K12 from the kinship matrix K following Equation 16, where K is mean centered around the
combined mean of the genotyping and GWAS panel. While these two choices, made separately, seem intuitive, together they
lead to a situation where, if m2 6¼ m, we can infer signals of adaptive divergence even if none exist. Therefore, we choose to
mean center both K and m!9 around the mean of all individuals in the genotyping and GWAS panels.
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