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Experimental biologists and human geneticists are often inter-
ested in whether a single disrupting mutation, be it a PTV or 
a missense mutation, is likely to have a phenotypic effect1–4. 

A related question is whether such a mutation might lead to a 
decrease in the fitness of its carrier. The relationship between these 
two questions, between effects on phenotypes and on fitness, is not 
straightforward, and many potential paths exist from genotype to 
phenotype to fitness. For instance, a single mutation could lead to 
a severe clinical phenotype, thus indicating that the gene is haplo-
insufficient or that there is a gain of function, yet could have small 
or negligible effects on fitness unless homozygous. As examples, 
in ELN and BRCA2, a single PTV leads to a severe but late-onset 
disease, whereas homozygote PTVs are lethal5–8; thus, mutations 
in the genes are clearly haploinsufficient, but are they dominant 
with regard to fitness? Conversely, a mutation in a highly pleiotro-
pic gene could have a very weak and potentially subclinical effect 
on any particular phenotype yet cumulatively inflict a severe cost 
on fitness9.

Following common practice in human genetics, we refer to genes 
in which a single loss-of-function mutation has a discernible phe-
notypic effect in heterozygotes as ‘haploinsufficient’ (at least with 
regard to that phenotype)4. In turn, we describe genes in which a 
single disrupting mutation has an evolutionary fitness effect in het-
erozygotes as ‘dominant’ (Box 1). Although the term ‘dominance’ 
is also used to refer to the effect of a single allele on phenotype, for 
clarity, here, we restrict its use to denote effects on fitness. More pre-
cisely, following the convention in population genetics, we denote 
the fitnesses 1, 1 – hs and 1 – s as corresponding to genotypes AA, 
AD and DD, respectively, where D is the deleterious allele, h is the 
dominance coefficient, and s is the selection coefficient. Thus, a 
mutation is completely recessive if h is equal to 0—that is, if delete-
rious fitness effects are present only in homozygotes—and at least 
partially dominant otherwise.

Estimating the strength of selection acting on a gene in terms of 
the selection coefficient (s) and dominance effects (h) of mutations 
has a long history in population genetics10–13. In model organisms, 
such estimates have relied on mutation-accumulation experiments 

and assays of gene-deletion libraries10,14–16; in humans and other spe-
cies, these parameters have been inferred from patterns of genetic 
variation17–21. The inferences are based on the notion of a mutation-
selection-drift balance, namely that the frequencies of deleterious 
alleles in a sample reflect a balance between the rate at which they 
are introduced by mutation and the rate at which they are purged 
from the population by selection (as well as random changes in fre-
quency due to genetic drift). Mutations with larger hs are purged 
more effectively and hence are expected to be present at lower fre-
quencies in the population—or, equivalently, are more likely to be 
absent from large samples (Box 1). Therefore, one way to identify 
genes whose loss is likely to decrease fitness is to assess whether 
disrupting mutations are found at lower frequencies than expected 
under some sensible null model.

To our knowledge, the approach of prioritizing human disease 
genes on the basis of fitness consequences of disrupting mutations 
was introduced by Petrovski et al.22, who ranked genes by comparing 
the observed number of common PTVs and missense mutations to 
the total number of observed variants. Their statistic was then sup-
plemented by a number of others23–26, notably pLI, which is defined 
as an estimate of the probability of being loss-of-function intoler-
ant27. Loosely, pLI is derived from a comparison of the observed 
number of PTVs in a sample to the number expected in the absence 
of fitness effects (that is, under neutrality), given an estimated muta-
tion rate for the gene. Specifically, Lek et al.27 assumed that the num-
ber of PTVs observed in a gene is Poisson distributed with mean 
λM, where M is the number of segregating PTVs expected in a sam-
ple under neutrality (estimated for each gene according to a muta-
tion model23 and the observed synonymous polymorphism counts), 
and λ reflects the depletion in the number due to selection. The 
authors categorized genes as being neutral (with λNull = 1), recessive 
(λRec = 0.463) or haploinsufficient (λHI = 0.089). The fixed values of 
λRec and λHI were obtained from the average proportional decrease 
in the number of observed PTVs in genes classified as recessive 
and severely haploinsufficient, respectively; the classification was 
based on phenotypic effects of mutations in the ClinGen dosage-
sensitivity gene list and a hand-curated gene set of Mendelian  
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disorders28. Given this model, Lek et al.27 estimated the proportion 
of human genes in each of their three categories and then obtained 
the maximum a posteriori probability of any given gene belong-
ing to each of the categories. Genes with a high probability (set at 
≥0.9) of belonging to the haploinsufficient class were classified as 
‘extremely loss-of-function intolerant’27.

pLI has been broadly used in human genetics to help identify 
genes in which a single disrupting mutation is likely to be clinically 
important2,29–36. It is also increasingly used in clinical annotation 
and in databases of mouse models, as an indicator of haploinsuf-
ficiency and dosage sensitivity37–41. In fact, however, pLI and related 
measures reflect only the strength of selection acting on heterozy-
gotes and are not directly informative about dominance effects on 
fitness, let alone about the degree of haploinsufficiency with respect 
to a phenotype.

The reason can be understood in population-genetic terms: 
unless h is vanishingly small (or long-term inbreeding levels are 
very high), a decrease in the frequency of PTVs—and hence of PTV 
counts—is indicative of the strength of selection acting on hetero-
zygotes, hs, and not of the two parameters h and s separately. This 
result derives from mutation-selection-drift balance theory devel-
oped by Haldane42,43, Wright44 and others45 (Box 1). Intuitively, it 
reflects that, when fitness effects in heterozygotes are strong relative 
to genetic drift, deleterious alleles are kept at a low frequency in 
the population. Homozygotes for the deleterious allele are therefore 
exceedingly rare, and selection acts almost entirely through het-
erozygotes. As a result, the frequencies of PTVs in a sample—and 

therefore pLI and related measures—reflect the strength of selec-
tion acting on heterozygotes. This may be true even for those genes 
classified as phenotypically recessive by clinicians: although a much 
stronger phenotype is seen in homozygotes, a subtle fitness effect on 
heterozygotes can be sufficient to markedly decrease the frequency 
of disease mutations46.

To illustrate this point, we used forward simulations to model 
how the observed counts of PTVs (and hence pLI) depend on  
h and s for a gene of typical length, considering both a constant-size 
population setting (Fig. 1a; details in legend) and a more realistic 
model for human demographic history47 (Fig. 1b). As can be seen, 
markedly different combinations of h and s lead to indistinguishable 
distributions of PTV counts (and hence of pLI values), as long as hs 
is the same (Fig. 1a,b). More generally, the probability of observing 
a specific PTV count is maximized along a ridge corresponding to 
combinations of h and s that result in a given hs value (Fig. 1c). As 
a result, pLI can be near 1 even when the dominance coefficient 
h is small, provided that s is sufficiently large; pLI is therefore not 
indicative of dominance per se.

Although these considerations clearly indicate that pLI should 
be considered to reflect hs, it was not designed to be an estimator 
of this parameter, and it has several problematic features as such. 
First, for a given value of hs, the expected value of pLI varies with 
gene length (Fig. 2a). Second, for a typical gene length and a wide 
range of hs values (that is, ~10−3 to ~10−1), the distribution of pLI is 
highly variable and bimodal, covering most of the range from 0 to 1 
(Fig. 2b). Consequently, two genes with the same hs can be assigned 

Box 1 | Frequencies of deleterious alleles under mutation-selection-drift balance

Deleterious alleles are introduced into the population by muta-
tion, then change in frequency as a result of the combined effects 
of genetic drift and natural selection. Unless a disease mutation 
confers an advantage in some environments (for example, the 
sickle-cell allele in populations with severe malaria52), the fre-
quency at which it will be found in a population reflects a bal-
ance between the rate at which it is introduced by mutation and 
removed by purifying selection, modulated by the effects of ge-
netic drift42–44.

This phenomenon is referred to as mutation-selection-drift 
balance and is modeled as follows (example in ref. 53). Let u be 
the mutation rate from the wild-type allele A to deleterious allele 
D. This mutation rate can be defined per site or per gene, by 
summing the mutation rate to deleterious alleles across sites (this 
simple summing is based on the implicit assumptions that there 
is no complementation and that compound heterozygotes for 
deleterious alleles have the same fitness effects as homozygotes54). 
The fitness of diploid individuals carrying genes with wild-type 
(A) or deleterious (D) alleles is given by:

where s is the selection coefficient, which measures the fitness of 
DD relative to AA, and h is the dominance coefficient, such that 
hs is the decrease in fitness of AD relative to AA. In population 
genetics, the term dominance (with respect to fitness) is often 
defined as h > 0.5. Here, however, we define a mutation as partially 
dominant as long as h is not near 0, because this criterion is directly 
relevant to the expected frequency of deleterious mutations55.

In the limit of an infinite, panmictic population (that is, 
ignoring genetic drift and inbreeding), when h > 0 (and hs >> u),  
the equilibrium frequency of the deleterious allele (D), q,  

is approximately43:
≈ ∕q u hs

Notably, when h > 0, the equilibrium frequency q is determined 
by the strength of selection in heterozygotes (that is, hs, the 
joint effects of h and s), because deleterious homozygotes are 
too infrequent for selection on them to appreciably affect allele 
dynamics in the population. Hence, in this approximation, for 
a given hs, different combinations of h and s will yield the same 
frequency of q.

Under the same conditions, for a completely recessive allele  
(h = 0), q is well approximated by43:

≈q u
s

Here, the equilibrium frequency is determined by selection 
in homozygotes. In this limit of an infinite population size, the 
frequency corresponding to a recessive allele with a given s > 0 can 
also arise from a dominant allele for some value of hs > 0.

In a finite population, there is a distribution of deleterious-
allele frequencies rather than a single (deterministic) value for any 
values of h and s. For a constant population size N, this distribution 
was derived by Wright44 and is again a function of hs (assuming 
that 2Nhs >> 1 and setting aside the case of sustained, high levels 
of inbreeding56). The resulting distribution can be highly variable, 
reflecting both stochasticity in the mutation process and the 
variance due to genetic drift. Dramatic changes in population size, 
as experienced by human populations, can also have a marked 
effect on the distribution of deleterious alleles. Regardless of these 
complications, distinguishing complete recessivity (h = 0) from 
small hs may still not be feasible, and, other than for complete 
recessivity, the expected allele frequency is a function of hs, not  
h and s separately55.

Genotype: AA AD DD

Fitness: 1 1 – hs 1 – s
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radically different pLI values (Fig. 2b). Conversely, the same pLI 
value can reflect markedly different hs values, as illustrated by the 
large variance of pLI in the hs range between 10−3 and 10−1 (Fig. 2a). 
Outside this range of hs values, pLI is almost uninformative about 
the underlying parameter: below hs ≈ 10−3, pLI is ~0 for any value 
of hs; above hs ≈ 10−1, it is always ~1, and these properties worsen 
with increasing gene length (Fig. 2a). Our simulations further illus-
trate that for a given hs, genetic drift also contributes to the vari-
ance in PTV counts, a feature that is ignored in the construction of 
pLI (through its reliance on a Poisson distribution of PTV counts)48. 
Thus, if the goal is to learn about fitness effects to help prioritize 
disease genes, a direct estimate of hs (for example, those in refs. 48,49) 
under a plausible demographic model, together with a measure of 
statistical uncertainty, would be preferable.

Recasting pLI in a population-genetic framework also aids in 
understanding why the assignment of genes as recessive is even less 
reliable (Fig. 2c). Lek et al.27 aim to divide genes into three categories, 
two of which correspond to hs > 0 (pLI) and hs = 0, s = 0 (pNULL). 
Logically, the remaining category (pREC) should include com-
pletely recessive cases (that is, those with hs = 0 but s > 0), in which 
selection acts exclusively against homozygotes (Box 1). Regardless 
of the method used, however, distinguishing this category from the 
hs > 0 case is usually not feasible, because the same expected allele 
frequency (and hence PTV count) can arise when h = 0 or when 
hs > 0 but small (see Box 1 and Fig. 2c). For example, for a typical 
per-gene mutation rate to disease alleles of u = 10−6 and no genetic 
drift, the frequency of disease alleles would be 1% whether h = 0 
(completely recessive) and s = 10−2 or h = 1 (fully dominant) and 
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Fig. 1 | pLI relates to hs, but not h and s separately. a,b, Different combinations of h and s with the same hs value yield highly similar distributions of pLI. 
We considered PTVs arising in a hypothetical human gene of typical length for a population of constant size (a) and a plausible model of changes in the 
effective population size of Europeans over time (b)47. We modeled the distinct number of segregating PTVs in a population by using forward simulations 
(details in Supplementary Note). We first obtained the number of PTVs expected under neutrality by averaging more than 106 simulations with s = h = 0.  
Then, for different combinations of s and h, we calculated the pLI value for each replicate from the number of PTVs obtained. The lines show the 
cumulative distribution of pLI in 106 replicates for the parameter combinations of s = 0.1, h = 0.9 (blue, dashed) and s = 0.9, h = 0.1 (red, solid). The insets 
in each figure show the density of the distribution of pLI scores. c, The probability of observing a specific PTV count is maximized along a ridge of fixed hs.  
We generated the distribution of PTV counts in a hypothetical human gene under the same plausible demographic history as above (Schiffels–Durbin 
model) for a grid of s and h values, by using 106 replicates for each parameter combination. The figure depicts the likelihood of observing a PTV count of 3 
(the value that by chance was obtained in the first run of s = 0.10, h = 0.90 and was treated as observed) for each combination of h and s.

pL
I

Fitness reduction in heterozygotes (hs)

10–4 10–3 10–2 10–1 100
0.0

0.5

1.0
1/2× typical length

1× typical length

2× typical length

pL
I

Frequency

Observed PTV count

0.0
123 6 90

0.20

0.25

0.15

0.10

0.05

0.00

1.0

0.5

s = 0.1, h = 0.5
pLI  0.9

pLI < 0.9
Density of pLI

PTV count

D
en

si
ty

s = 10–3, h = 1

s = 10–1, h = 0

Neutral

0 10 20 30

a b c

pLI
0.0

0

10

1.0

D
en

si
ty

0.06

0.12

0.00

Fig. 2 | Properties of pLI. a, Behavior of pLI as a function of hs. We simulated the counts of PTVs for a range of hs values under a plausible model of 
population-size changes (Schiffels–Durbin model47; Supplementary Note). For each run, we calculated pLI by using the observed number of PTVs and the 
expected number obtained from averaging over neutral simulations. The purple line is the LOESS-smoothed curve over all simulations for each value of hs 
(the x axis on a log10 scale) in a human gene of typical length. The shaded area represents the central 95%-tile interval of pLI scores for each value of hs.  
The cyan and yellow lines are the LOESS-smoothed curves for simulations in a gene with half or twice the length of a typical gene, respectively. b, For a 
given hs, pLI scores are highly variable. The red curve depicts the pLI score as a function of the number of observed PTVs. The histogram represents the 
distribution of simulated PTV counts for s = 0.1, h = 0.5 under a plausible demographic model for Europeans47, in a human gene of typical length; darker 
bars indicate scores that would be classified as extremely loss-of-function intolerant27. The inset shows the density of pLI scores. c, Complete recessivity  
(h = 0) and weak selection on heterozygotes (hs > 0) can lead to similar PTV counts. The distribution labeled ‘neutral’ shows the simulated counts of PTVs 
with h and s both equal to 0. Each distribution shows the results from 106 simulations. Dashed lines indicate the mean of each distribution.

Nature Genetics | VOL 51 | MAY 2019 | 772–776 | www.nature.com/naturegenetics774

http://www.nature.com/naturegenetics


PerspectiveNATure GeneTIcS

s = 10−4 (equations in Box 1). In other words, strongly deleterious, 
completely recessive PTVs can be difficult to distinguish from those 
that are weakly selected and at least partially dominant.

Why, then, in practice, are genes classified by clinicians as domi-
nant on the basis of Mendelian disease phenotypes enriched in 
higher pLI scores when those classified as recessive are not2,27,31? 
Mendelian disease genes consist mostly of cases in which mutations 
are known to cause a highly deleterious outcome, that is, for which 
there is prior knowledge that s is likely to be large (even close to 1). 
When s is large, a gene will be classified by pLI as haploinsufficient 
as long as fitness effects in heterozygotes are sufficient to decrease 
the number of observed PTVs, that is, as long as h is not tiny. For 
most genes, however, there is no prior knowledge about s, and in 
that case, pLI—or any measure based on the frequency of PTVs—
cannot reliably distinguish recessivity from dominance, let alone 
identify haploinsufficiency.

In summary, population-genetic approaches based on the defi-
ciency of putatively deleterious mutations2,3,23,25,49–51 hold great 
promise for prioritizing genes in which mutations are likely to be 
harmful in heterozygotes22,49. Recasting these approaches in terms 
of underlying population-genetic parameters provides a natu-
ral framework for their interpretation and a clearer understand-
ing of what inferences they can reliably support: these approaches 
identify genes in which single PTVs are likely to have large fitness 
effects in heterozygotes. For this subset of genes, there is informa-
tion about dominance when s is known a priori to be large and not 
otherwise. For any gene, the methods cannot be used to directly 
infer haploinsufficiency status. Where fitness effects are to be used 
as an indication of pathogenicity, we therefore argue that a better 
approach is the development of direct estimates of hs (and mea-
sures of uncertainty) under realistic demographic models for the 
population of interest.

Reporting Summary. Further information on research design 
is available in the Nature Research Reporting Summary linked to  
this article.

Data availability
C++ source code for the simulations of PTV counts and accompanying scripts 
used for plotting and data analysis are available at https://github.com/zfuller5280/
MutationIntoleranceSimulations.
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